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Abstrad The dynamics of segregation of a binary mixture AB with chemically active 
components are studied. For simplicity, the study is confined to chemical reactions in which 
the reactants and end-products cansist of only A or B. A phenomenological model and detailed 
numerical results for the reaction AB + BB in the specific case when the forward and backward 
reactions proceed at the same M e  are presented. 

A classical problem in non-equilibrium statistical mechanics is the study of homogeneous 
binary mixtures which have suddenly been rendered far-from-equilibrium by (say) a 
temperature or pressure quench [l]. Much interest has focused on the dynamics whereby 
such systems approach their final equilibrium state and this area of study is now referred 
to as ‘phase ordering dynamics’. As is natural, initial investigations have been largely 
confined to the study of pure, isotropic systems. There is now a complete experimental 
and numerical understanding of phase ordering dynamics in pure, isotropic two-component 
mixtures-though there are still many outstanding theoretical questions cl]. It is now well 
accepted that the temporal evolution of these systems is characterized by the apperance of 
domains which are rich in either of the two components. These domains are characterized 
by a unique, time-dependent length scale L ( t )  (where t is time), which has a power- 
law dependence asymptotic in time, namely L ( t )  - @. The growth exponent q5 depends 
critically on whether or not the order parameter is conserved. For the case of non-conserved 
order parameter (e.g. the ordering of a ferromagnet), q5 = ;-the so-called Lifshitz-Cahn- 
Allen law. For the case of conserved order parameter without hydrodynamic effects (e.g. 
the segregation of a binary alloy), q5 = 4. which is known as the LifshitzSlyozov growth 
law. Finally, for the case of conserved order parameter with hydrodynamic effects (e.g. 
the segregation of binary fluids), it has been known for some time experimentally and has 
recently been demonstrated numerically [21 that q5 = 1 .  

Recently, attention has turned to the problems of phase ordering dynamics in more 
realistic experimental situations. The aim of such studies is usually two-fold. First, they 
attempt to formulate a reasonable model which incorporates the relevant ‘experimentally 
realistic’ effect. Secondly, they study these models numerically and analytically, though 
the analysis is mostly numerical because of the substantial analytical difficulties involved- 
even at the level of pure, isotropic systems. To name a few examples, there have been a 
number of studies of important phenomena, like strain effects in segregating binary alloys 
[3]; gravitational effects 141; the role of quenched disorder in slowing down domain growth 
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[5]; and the effect of a surface with a preferential attraction for one of the components of 
a binary mixture [61. 

In this paper, a study is made of the interplay between chemical reactions and segregation 
dynamics in quenched binary mixtures AB without hydrodynamic effects. At present, 
investigations are confined to simple model reactions in which the initial reactants and end 
products are either A or E, the components of the binary mixture. As illustrated shortly, 
these simple chemical reactions will have the effect of introducing terms which do not 
conserve the order parameter into the dynamical equations. The model chemical reactions 
investigated are as follows: 

(i) A e B; 
(ii) AA + BB; 
(iii) AB e BB. This reaction occurs only at domain interfaces in the forward direction. 
(iv) AB or BA 

In reactions (i)-(iii), a time-scale l / q  is associated with the reaction in the forward 
direction and a time-scale l/rz with the reaction in the backward direction. In reaction (iv), 
time-scales l / q  and l / q  are associated with reactions in which the end products are AA 
and BB, respectively. 

Before presenting results from these investigations, it is useful to clarify the 
oversimplifications associated with the proposed model systems. Real solids are imperfect 
and diffusive transport, particularly in chemically reactive systems, involves lattice defects. 
Sometimes, these are point defects such as interstitials, vacancies and impurities. More 
often, these are extended defects such as dislocations, grain boundaries, etc. The usual 
Kawasaki spin-exchange dynamics [I] is, at best, an approximate model of atomic motion 
in such systems. Furthermore, phase transformations are rarely isomorphic and new phases 
are often formed in the transformation of chemically reactive solid systems [7]. Even when 
the overall kinetics is described by the simple cases (i)-(iv), the actual mechanism 181 of the 
reaction is complex, involving many intermediate steps and transient phases not described 
by a simple lattice-gas model. Thus, there are only a few examples of systems which 
may be approximated by these overly simplistic models. An example of an irreversible 
reaction in case (i) is the radioactive dissociation of a radioactive atom A into a daughter 
atom B which can occupy vacancy sites in the A-lattice. (It is interesting to note that 
the coarse-grained models obtained for case (i) (not presented here) are identical to those 
proposed by Oono and Shiwa [9] in the context of the apparently unrelated problem of 
spinodal decomposition in block copolymers.) The photochemical solid-state dimerization 
of cinnamonic acid, anthracene and some of their derivatives are possible examples of 
reactions under case (ii) or limiting cases of (iii) or (iv) [10-12]. The existence of catalytic 
related disordered isomorphous crystals [13] may also be the product of simple kinetics as 
in cases (ii)-(iv) although the precise nature of the kinetics of formation of these crystals 
is still to be well understood. 

In this paper, representative results are presented from investigations of these simple 
models. Specifically, a phenomenological model is formulated for the reaction in (iii) 
and numerical results provided from simulations of this model. Detailed modelling and 
numerical results for all the reactions mentioned above will be presented later. 

A binary mixture (with components A and B) is considered which has been quenched 
below its bulk critical temperature T,. The dynamics of this mixture is conveniently 
described in the context of an king model with a spin variable Si at site i .  If the spin 
variable takes the value + I  (-1) at a site, we say that the site is occupied by an A-atom 
(B-atom). There are two ingredients in the dynamics. First, there is the drive of the 

AA or BB. This reaction occurs only at the domain interfaces. 
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system to segregate into A-rich and B-rich domains. This is successfully described at the 
microscopic level by spin-exchange or Kawasaki dynamics and at the phenomenological 
level by the Cahn-Hilliard equation [ 14.61, namely 

where is the characteristic time for a spin-exchange process; a is the lattice spacing: and 
@(z, c) is the order parameter at point I and time r. In ( la) ,  T is the temperature and q 
is the coordination number of each site on the king lattice. Equation ( l a )  can be put in a 
dimensionless form by introducing the rescaled variables 

The resultant dimensionless Cahn-Hilliard equation is 

where @ ( T ,  t )  is the order parameter at (dimensionless) point T and time t .  The dynamics 
of ( l b )  is such that an initially disordered system segregates into domains with @ = f l  
in the bulk. The second ingredient in the dynamics is the chemical reaction which we are 
interested in. To obtain a coarse-grained description of the effect of this reaction, a master 
equation description is invoked as follows: 

+ !v(-& 4 si)P({sI, . . . , -si,. . . , SN], f). (2)  

Equation (2 )  describes the evolution of the time-dependent probability distribution function 
for N spins, namely ~ ( ( S I , .  . . , Si ,  . . . , SN}, t ) .  For simplicity, it is assumed that the spins 
are arranged on a simple cubic lattice. The first term on the right-hand side corresponds to 
the probability of a spin S, flipping to -St with all other spins remaining unchanged, i.e. 
escape from the configuration (SI,. . . , S,, . . . , SN]. The second term on the right-hand side 
corresponds to the probability of a spin -Si flipping to Si with all other spins remaining 
unchanged, i.e. contributions to the configuration considered. The crucial information is in 
the transition probabilities W(Si  + -Si). Recall that the reaction of interest here is 

i 

AB + BB 

BB -+ AB 

with a rate 1/71 

with a rate 1/52 
(3) 

so that A (or B) is converted to B (or A) only in the presence of an atom of B. Bulk regions 
of A do not undergo any change in this reaction. The hansition probabilities which describe 
this reaction are 
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where li refers to the neighbours of i. W(-Sj + S,) is obtained by replacing Si with 
-Sj on the right-hand side of (4). If we replace (4) in (Z), multiply both sides by the 
spin-variable Sk and average over all configurations, we obtain (using Si  = 1) 

S Puri and H L Frisch 

where the angular brackets denote the configuration averaging. So far, there have been no 
approximations. We proceed to a continuum description by using a mean-field decoupling 
approximation and identifying (sk) = @(E, r ) ,  where o and r are not dimensionless 
variables as yet. Finally, we Taylor expand the order parameter at the neighbouring sites 
[15] and obtain the following coarse-grained equation: 

In (6), q is the coordination number of the lattice; a is the lattice spacing; and we have only 
retained derivatives up to second order. Because of the approximations involved, equation 
(6) should be treated as a phenomenological equation. To ascertain its reasonableness, we 
can consider various limiting cases as follows: 

(a) When l/rl # 0 and l/rz = 0 (only forward reaction), we have the homogeneous 
fixed points @* = + I .  -1. The first one corresponds to unstable equilibrium (all A's) and 
the second one corresponds to stable equilibrium (all B's). 

(b) When l/r, = 0 and l/rz # 0 (only backward reaction), we have only one 
homogeneous fixed point @' = 1, which corresponds to stable equilibrium (all A's). 

(c) When 1/51 = 1/r2 = a', we have the equation 

(7) 
ab -(z, r )  = -ol'q@(s, r)(l - @(z, r ) )  +da2@(o,  r)v;@(z, 5) .  
as 

Equation (7) has the homogeneous fixed points $? = +I (unstable equilibrium, all A's) and 
@* = 0 (stable equilibrium, homogeneous mixture). 

In this paper, we focus on case (c) above. If we use the same rescaling that renders the 
Cahn-Hilliard equation dimensionless, we find that at a particular temperature (T  = 0.75Tc), 
equation ( 7 )  has the particularly simple dimensionless form 

(8) 

where (Y is a phenomenological constant (a = 24rSa', where r, is the characteristic time 
for a spin-exchange). Thus, the equation for the segregation of a binary mixture whose 
components are undergoing the specified chemical reaction is as follows: 

a* (Y 
- (r ,  t )  = --(Y*(r, t ) ( l -  W ,  t ) )  + -w, t ) v * ~ ,  t )  
at * 
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To obtain (9), the terms on the right-hand side of ( Ib )  and (8) have simply been added, as the 
segregation dynamics do not interfere with the reaction dynamics. Notice that (9) does not 
conserve the order parameter. The constant 01 fixes the relative time-scales of segregation 
and the chemical reaction. The homogeneous solution $* = 0 (@* = I )  is unstable 
(stable) for the segregation dynamics but stable (unstable) for the chemical reaction. For 
the important case of fluctuations around a zero background (i.e. the critical quench), a 
simple analysis shows that the fluctuations grow if a! -= 1 Our results show that the system 
evolves into interesting microstructures which depend cnhcally on the relative time-scales 
of segregation and the chemical reaction. 

We have numerically simulated equation (9) using a simple Euler discretization on two- 
dimensional lattices of size NI x N y  (where N, = Ny = 256) with periodic boundary 
conditions. The discretization mesh sizes are At = 0.1 and Ax = 1.7. These mesh sizes 
are too come to give a numerical solution which accurately shadows the solution of the 
original partial differential equation. Rather, this discrete model should be understood in 
the spirit of cell dynamical system (CDS) models [16]. Simulations reported here are for 
the parameter value a! = 0.01. We will describe the different microstructures the system 
evolves into for different values of 01 elsewhere. In these simulations, the initial conditions 
always consisted of uniformly distributed random fluctuations of amplitude 0.05 about a 
zero background, i.e. the so-called critical quench. 

Figure 1 shows evolution pictures for the discrete model from early times to times 
where it freezes into a microstructure. Sites with positive order parameter (i.e. rich in A) 
are marked black. The early time patterns are reminiscent of the bicontinuous structure of 
spinodal decomposition. However, this structure soon breaks up into a mixture of spherical 
domains and worm-like domains of the B-rich phase in a background of the A-rich phase. 
For times f z 1000, there is no further evolution of the system and it is frozen into the 
microstructure shown fort = 1000. Figure 2 shows the evolution of order-parameter profiles 
along a cross section at y = L / 2  (where L = N y A x )  for the snapshots of figure 1. As is 
evident from figures 1 and 2,  the system evolves into an off-critical state where A becomes a 
majority phase and B a minority phase. Figure 3 shows the time dependence of the average 
order parameter of the system ( @ ) ( t ) ,  which is a measure of the off-criticality. This quantity 
rapidly (by about t = 200) saturates to its maximum value and remains unchanged after 
that. 

The most remarkable feature of phase ordering dynamics in chemically inert systems is 
the dynamical scaling of the time-dependent structure factor [ 171, namely 

4 : .  

S(k t )  = t ) $ ( k  t )*)  (10) 

where the angular brackets denote an averaging over initial conditions; and $ ( k , t )  is 
the Fourier transform of $(T, t ) .  Dynamical scaling is a consequence of the existence 
of a unique characteristic length scale L ( f )  and F ( x )  is a universal function, which is 
time-independent and reflects the morphology of domain growth. Jn our chemically active 
system, the morphology evolves continuously in time and the structure factor would not 
be expected to scale dynamically. This is confirmed in figure 4(a), where we superpose 
data for S ( k , t ) ( k ) *  versus k / ( k )  from times t = 100, 300 and 1000, where (k) is the 
first moment of the structure factor and is a measure of the reciprocal of the characteristic 
length scale, if it exists [16]. me structure-factor data in figure 4(a) has been obtained 
as an average over 100 independent initial conditions and after spherically averaging the 
vector function S(k, f ) . )  Furthermore, inspecting the evolution pictures at t = IOOO, one 
might be tempted to speculate that the morphology of this system may be. related to that 
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Y L +X 

t = 5 0  t=100 

t=300 t=1000 

F i y r e  1. Evolution pichtres obtained from an Euler-discretized venion of the model (equation 
(9)) for the segregation dynamics of a binary mixhlre AB undergoing the simple chemical 
reaction described in the lext. The discretization mesh sizes are At = 0.1 and Ax = 1.7 and 
the lattice size is N, x Ny. where N, = N7 = 256. Periodic bounday conditions are applied 
in both directions. The initial condition consists of uniformly distributed random fluctuations 
of amplitude 0.05 about a background of zero, i.e. the sosalled critical quench. Regions with 
positive order parameter (A-rich) are morked in black. Pictures are shown For dimensionless 
times 1 = 50, 100,300 and IOW. 

for segregation dynamics (with no reaction) for an appropriately off-critical quench. This 
is also not me. Figure 4(b) superposes data for S(k .  t)(k)* versus k / ( k )  for the evolution 
described above at t = 1000 and for the Cahn-Hilliard evolution of an off-critical quench 
(with an average order parameter of 0.38) at t = 4000. There is obviously no similarity 
between the two scaled functions. 

Finally, we investigate whether the domain-size distributions of the different phases A 
and B can be individually characterized by unique length scales. For this, we consider the 
time-dependent domain-size distribution functions nA(L,  t )  and n e ( L ,  t ) ,  where L is the 
linear domain size. Numerically, these are obtained as follows. For a single run, the order 
parameter profiles along horizontal and vertical cross sections at all values of x and y for 
the discrete lattice are considered. Each order-parameter profile is numerically examined to 
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-1.0- - 
t=50 t=100 

1 .o 
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0 

0 100 200 300 400 500 0 100 200 300 400 500 
t=300 t=1000 

L 1::: 
Figure 1. Variation of order p m e t e r  for the evolution pictures of figure 1 along a cross 
section at y = LIZ, where L = N y A x .  The figure plots $ ( x ,  L12.t) versus x for the same 
dimensionless times as in figure 1. 

0 200 4 0 0  600 BOO IO00 

t 

Figure 3. Average order panmeter (*,)(t) as a function of time I for the evolution shown in 
figure I .  
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Figure 4. (a) Plot of S(k.  r)(k)2 versus k / ( k )  from our discrete model for dimensionless times 
r = 100.300 and 1000 (denoted by the symbols indicated). The time-dependent structure factor 
S(k .  1) is obtained as am average over 100 independent ms and a spherical averaging of the 
vector function S(k. 1). The first moment of S(k, r) (denoted as ( k ) )  is taken as a mexure of 
the inverse of the characteristic length scale. ( b )  Superposition of data for S(k,t)(k)’ versus 
k / ( k )  from the discrete model (at time f = 1000, denoted by circles) and from the evolution 
of an off-critical quench with (+) = 0.38 for an Eulerdiscretized version of the Cahn-Hilliard 
equation (at time I = 4000. denoted by squares). The simulation of the Cahn-Hilliard equation 
was done using the Same mesh sizes and system size as described in figure 1. The corresponding 
structurt factor was obtained as an average over 100 independent initial conditions. 

determine the location and number of zero crossings, i.e. when the order parameter changes 
sign. These zero crossings are used to determine the domain-size distributions (for A and 
B) corresponding to the order-parameter profile. This data is averaged (for each run) over 
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- 
1-1 

-1 

4 
C 

I 

1 0 0  
3 0 0  
1 0 0 0  

0 1 0 0  
m 300 
A 1 0 0 0  

Figure 5. ( a )  Domain-size distribution function for A-rich domains, ~ A ( L ,  f ) .  as a function of 
linear domain sire L for dimensionless times f = 100, 300 and 1000 (denoted by the indicated 
symbols). The domain-size distribution function is obtained as an average over 200 independent 
runs, with averaging over horizontal and vertical sweeps of the lattice for each run. It is 
normalized to unity. (b)  Test of dynamical scaling for the data for n*(L. f )  from figure Xo). 
This figure superposes data for n*(L, r ) (L) ,  versus L / ( L ) A  from dimensionless times t = 100, 
300 and 1000, where ( L ) A  is the first moment of n*(L. 1 ) .  

the different cross sections (numbering N, x Nu in all) to obtain the domain-size distribution 
corresponding to a single run. Finally, the domain-size distributions are averaged over 200 
independent runs and normalized so that 

Cn*,rJ(L,  t )  = 1 
L 

where L takes the discrete values n,Ax,  with nx going from 1 to 256. Figure $(a) plots 
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the domain-size distribution function for A-rich domains, ~ A ( L ,  t ) ,  as a function of domain 
size L for f = 100,300 and 1OOO. The distinctive feature of the distribution at later times is 
the devclopment of a subsidiary peak. If this distribution is characterized by a single length 
LA(f), it should exhibit the dynamical scaling form nA(L, r) = (LA(f))-’f(L/LA(t)), 
where f(x) is independent of time. Figure 5(b) plots ~ A ( L ,  ~ ) ( L ) A  versus L / ( L ) A  for 
f = 100, 300 and 1O00, where the first moment of the domain-size distribution function 
(denoted by ( L ) A )  has been taken as a measure of the characteristic length scale. The 
data collapse is not good through the entire range of times, suggesting that the domain-si= 
distribution function for A-rich domains does not scale dynamically. (Similar results are 
obtained if the position of the higher peak of the distribution function is used as a measure 
of the characteristic length scale. The results are not shown here.) 

S Puri a d  H L Frisch 

-1 
m 
I 

C 

. 4  

. 3  

. 2  

. I  

0 

2 5  

- 2.0 
L) 

I 

m 
A 1 . 5  
_1 ” 
i - 1 . 0  

0 

-5 0 5 10 15 20 25 

1 0 0  
3 0 0  
1 0 0 0  

1 0 0  
300 
1 0 0 0  

- 5 0 . 5  I 1 . 5  2 2 . 5  3 3.5 4 

L/<L>B( t I 

Figure 6. (a) Analogous to figure 5(a). and (b) analogous m figure Xb), but for the B-rich 
domains. 
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Figure 6(a) plots the domain-size distribution function for B-rich domains nB(L, t), as 
a function of domain size L for times t = 100, 300 and 1000. Figure 6(b) investigates 
the dynamical scaling of nB(L,t), again using its first moment ( L ) B  as a measure of the 
characteristic domain size. Once again, the data collapse is not good, though it is somewhat 
better than in figure 5(b). Of course, one should keep in mind that nB(L, t) has a much 
weaker time dependence than nA(L, t )  and this is responsible for the deceptively better 
dynamical scaling in figure 6(b). 

For completeness, we plot the time dependence of the first moments of the domain-size 
distribution functions for A-rich and B-rich domains in figure 7. The average size of A-rich 
domains saturates out to a much larger value than that for B-rich domains, but there is little 
growth in either for t > 400. 

D i - A  
m i - B  

Figure 7. Time dependence of the first moments (L)A and (L)a  of the domain-size dishibution 
functions for the A-rich and B-rich domains, respectively. 

Let us end with a brief summary and discussion of these results. The dynamics 
of segregation of binary mixtures of chemically active components A and B have been 
modelled. At present, this has been confined (for simplicity) to reactions in which the 
initial reactants and end products are either A or B. The effect of these reactions is to 
introduce non-conserving terms into the segregation dynamics, which is usually described 
by the order-parameter conserving Cahn-filliard equation. The effects of these reactions are 
easily modelled by using an approach based on the master equation. These results indicate 
that the evolution morphology of such a system depends critically on the relative timescales 
of segregation and the chemical reaction. In this paper, a model for the reversible reaction 
AB + BB has been presented and detailed numerical results given for the case in which 
the forward and backward reactions proceed at the same rate. Our results indicate that 
there are multiple length scales characterizing the evolution dynamics. The timedependent 
s h a m e  factor does not exhibit dynamical scaling and neither do the individual domain-size 
distribution functions. 

This paper is the first part of a larger study where we intend to study general reactions 
of the type A + B + C + D, where C may or may not be the same as D. Naturally, the 
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presence of components other than A or B complicates the problem considerably as it renders 
incomplete even the Cahn-Hilliard description of segregation dynamics. A complete model 
can be motivated from a master equation approach to spin-n models, where the total number 
of components involved as both reactants and end products is 2n + 1 [18]. Conceptually, 
this poses no problems but the partial differential equations that result are considerably more 
complicated. 
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